

The predictive value of AQ and SRS-A in adults with suspected ASD

M. Meek-Hekelaar, MSc, M. Bezemer, MSc., & E.M.A. Blijd-Hoogewys, MSc., PhD

m.bezemer@inter-psychology.nl

Introduction

Background

The **Autism Spectrum Quotient** (AQ; Baron-Cohen et al., 2001, via open source) and the **Social Responsiveness Scale for Adults** (SRS-A; Constantino & Todd, 2005, via paid source) measure the degree to which adults with a normal intelligence exhibit autistic traits. In the Netherlands, both questionnaires are often used as **screeners** in the assessment of adults with suspected ASD. Their diagnostic value depends on their capability to properly assess the likelihood that the disorder is present (sensitivity: true positives) or not (specificity: true negatives).

In former research, we have proven the AQ to be moderately valuable for ASD case identification in a general mental health care population (Bezemer & Blijd-Hoogewys, 2016). Comparing the predictive value of AQ and SRS-A, in the same ASD assessment procedure, has not been done yet.

Objectives

The aim was to compare the predictive value of the AQ and the SRS-A for ASD diagnostic classification in a general mental health care population with suspected ASD.

Methods

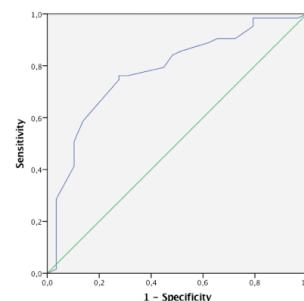
At INTER-PSY, a general mental health care facility in Groningen, adult patients, who were **referred for ASD assessment**, filled in both an AQ and a SRS-A self-report at the beginning of the diagnostic process.

An **independent researcher** scored the questionnaires. The results remained unknown to the clinician and the patient until after the ASD diagnosis was officially confirmed or rejected, resulting in an ASD-group and a non-ASD group. In doing so, the results of the questionnaires could not play any role in the diagnostic conclusion (blind).

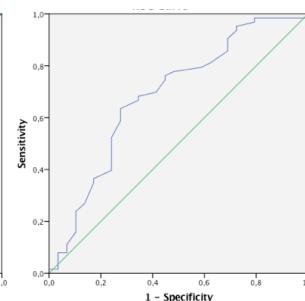
ASD diagnostic was based on an extensive psychiatric examination, a standardized ASD interview, and a developmental interview with (one of the) parents, in the presence of the patient.

In total, there were **92 participants** ($M = 33.51$ years, $SD = 12.33$), of which 68% received an ASD diagnosis ($n = 63$). The ASD and non-ASD group did not differ considerably on important characteristics, such as age ($M = 33.68$ vs. $M = 33.14$) and gender ratio (1.3:1 vs. 1.4:1).

For analyses, AQ raw scores and SRS-A T-scores were used. Descriptive statistics, correlations, T-tests and ROC-analyses were performed.


Table 2 Total score and subscale scores of AQ and SRS-A (ASD vs. non-ASD)

	ASD (n = 63) M (SD)	Non-ASD (n = 29) M (SD)	Effect size (Cohen's d)	AUC value (CI 95%)
AQ total	29.17 (7.75)**	20.97 (8.13)	1.03	.78 (.68-.88)
Subscales:				
- Social	6.70 (2.19)**	3.86 (2.72)	1.29	.78 (.68-.89)
- Attention switching	7.10 (2.43)*	5.66 (2.79)	0.55	.65 (.53-.77)
- Local details	5.48 (2.62)*	4.14 (2.34)	0.54	.66 (.54-.78)
- Communication	5.38 (2.22)**	3.45 (2.16)	0.88	.74 (.63-.85)
- Imagination	4.52 (2.14)*	3.86 (2.15)	0.31	.59 (.47-.72)
SRS-A total	70.87 (10.76)*	63.59 (12.56)	0.62	.69 (.56-.81)
Subscales:				
- Social awareness	66.44 (11.68)*	60.59 (12.80)	0.48	.64 (.51-.76)
- Social communication	70.56 (9.93)*	63.83 (12.36)	0.60	.66 (.53-.78)
- Social motivation	70.17 (11.20)**	62.59 (12.26)	0.65	.68 (.56-.80)
- Restricted interest & repetitive behavior	68.78 (13.85)	63.24 (14.71)	0.39	.62 (.50-.75)


*Significant difference ASD vs. non-ASD, $p < .05$

**Significant difference ASD vs. non-ASD, $p < .01$ (correction for multiple testing $0.05/11 = 0.0045$)

Figure 1: ROC of AQ total score

Figure 2: ROC of SRS-A total score

Results

The **ASD group had significant higher scores** than the non-ASD group on both the AQ ($M = 29.17$, $SD = 7.75$; $M = 20.97$, $SD = 8.13$ respectively; $t = 4.65$, $df = 90$, $p < .001$, Cohen's d = 1.03) and SRS-A ($M = 70.87$, $SD = 10.76$; $M = 63.59$, $SD = 12.56$ respectively; $t = 2.86$, $df = 90$, $p < .01$, Cohen's d = 0.62) (see Table 2).

The **correlation between both questionnaires** was high ($r = .80$, $p < .001$).

The **ROC-analysis** for the AQ yielded an AUC of .78 ($p < .001$) for ASD vs. non-ASD. A cut-off total score of 26 is recommended for screening use by Woodbury-Smith and colleagues (2005). This cut-off was also determined by the best Youden's Index in our research. In that case, the AQ had a sensitivity of .76 and a specificity of .72 for ASD (see Figure 1).

The **ROC analysis** for the SRS-A yielded an AUC of .69 ($p < .01$) for ASD vs. non-ASD. A cut-off T-score of 70 (determined by the best Youden's Index) had a sensitivity of .63 and a specificity of .72 for ASD (see Figure 2).

Discussion

Both questionnaires could differentiate between the ASD and the non-ASD group. However, the **AQ had a higher effect size** than the SRS-A (large vs. medium), a **better predictive reliability** (moderate vs. poor) and a **higher sensitivity**.

Based on the current results, the **AQ seems to be superior as a screening tool** for general mental health care patients with suspected ASD. Replication studies are needed before advising which one to use for clinical practice. Also, note that a questionnaire is not intended to be diagnostic in itself. If there are clinically significant levels of autistic traits, a comprehensive diagnostic evaluation is warranted.

Garcia-Primo, P., Hellendoorn, A., Charman, T., Roeyers, H., Dereu, M., Roge, B., ...Canal-Bedia, R. (2014). Screening for autism spectrum disorders: state of the art in Europe. *European child & adolescent psychiatry*, 23, 1005-1021.

Hiller, R.M., Young, R.L., & Weber, N. (2014). Sex differences in autism spectrum disorder based on DSM-5 criteria: evidence from clinician and teacher reporting. *Journal of abnormal child psychology*, 42, 1381-1393.

Lai, M.-C., Lombardo, M.V., Pasco, G., Ruigrok, A.N., Wheelwright, S.J., Sadek, S.A., ... Baron-Cohen, S. (2011). A behavioral comparison of male and female adults with high functioning autism spectrum conditions. *PLoS ONE*, 6(6), e20835.

Mandy, W., Chilvers, R., Chowdhury, U., Salter, G., Seigal, A., Skuse, D. (2012). Sex differences in autism spectrum disorder: Evidence from a large sample of children and adolescents. *Journal of Autism and Developmental Disorders*, 42, 1304-1313.